Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Pak J Biol Sci ; 25(9): 816-821, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36098083

RESUMO

<b>Background and Objective:</b> Dengue cases have increased while the spread is getting broader worldwide. Temephos has been frequently used to control the larvae of the <i>Aedes aegypti</i> L., the primary vector of dengue. The intensive use of this larvicide has given rise to resistance. This study aims to determine the susceptibility status of <i>Ae. aegypti</i> to temephos and examine the two mutations (F290V and F455W) that possibly occur in the <i>Ace-1</i> gene of <i>Ae. aegypti</i> from Salido Sub-District, IV Jurai District, Pesisir Selatan Regency. <b>Materials and Methods:</b> The susceptibility test was performed referring to a standard method of the World Health Organization, followed by a molecular test (polymerase chain reaction) and sequencing. <b>Results:</b> The results showed that the larvae of <i>Ae. aegypti</i> have been tolerant to temephos (0.012 mg L<sup></sup><sup>1</sup>) with a percentage of larval mortality of 91.67%. The sequencing analysis in the <i>Ace-1</i> gene revealed the absence of F290V and F455W mutation in temephos-resistant <i>Ae. aegypti</i>, but a point mutation was detected at codon 506. This mutation shifts the ACA codon to ACT, but still codes for the same amino acid, threonine. <b>Conclusion:</b> Our study indicates the presence of other resistance mechanisms in the major dengue vector of the Salido District. Implementation of the alternative population control strategy is required to prevent the temephos resistance further.


Assuntos
Aedes , Dengue , Inseticidas , Aedes/genética , Animais , Indonésia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Larva/genética , Mosquitos Vetores/genética , Mutação , Temefós
2.
Front Pharmacol ; 12: 760156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069194

RESUMO

Aedes aegypti L. is known as the most relevant vector mosquito for viruses such as yellow fever, chikungunya, dengue, and Zika, especially in places with unplanned urbanization, and erratic water supply. Plants used in folk medicine have become a useful source of active compounds with the potential to control the dissemination of Ae. aegypti. Compounds isolated from Malvaceae sensu lato have been previously reported as larvicides, repellents, and insecticides. Recent studies have demonstrated the anti Ae. aegypti activity of sulfated flavonoids, an uncommon type of flavonoid derivatives. This research reports the phytochemical investigation of Sidastrum paniculatum (L.) Fryxell, a Malvaceae species with the potential against Ae. aegypti. Chromatographic procedures resulted in the isolation of the compounds: stearic acid (1), N-trans-feruloyltyramine (2), acacetin (3), apigenin (4), tiliroside (5), along with the sulfated flavonoids: wissadulin (6), 7,4'-di-O-methyl-8-O-sulfate flavone (7), yannin (8), beltraonin (9a), 7-O-sulfate isoscutellarein (paniculatumin) (9b), and condadin (10). This is the first report of compound 7-O-sulfate isoscutellarein (9b). The structures were elucidated by spectroscopic analysis (NMR, LC-HRMS and FT-IR). The sulfated flavonoids identified were submitted to a ligand-based and structure-based virtual screening against two targets: 1YIY (from adult Ae. aegypti) and 1PZ4 (from Ae. aegypti larvae). The results indicated that when the O-sulfate group is bearing the position 7, the structures are potentially active in 1PZ4 protein. On the other hand, flavonoids with the O-sulfate group bearing position 8 were showed to be more likely to bind to the 1YIY protein. Our findings indicated that S. paniculatum is a promising source of sulfated flavonoids with potential against Ae. aegypti.

3.
Environ Pollut ; 266(Pt 3): 115275, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32771866

RESUMO

Pharmaceuticals and personal care products (PPCPs) are a class of emerging contaminants commonly detected in environmental waters worldwide. Although reports about their detection in aquatic environments are increasing, limited studies show their effects on holometabolous insects. In this study, acute and chronic exposure to naproxen (0.02, 41, 82, 164, 382, 656, and 1312 mg L-1) and propylparaben (0.02, 25, 50, 100, 250, 500, and 1000 mg L-1) were evaluated in Aedes aegypti L. Acute exposure to naproxen (≥0.02 mg L-1) and propylparaben (≥0.02 mg L-1) reduced egg eclosion. Propylparaben (≥250 mg L-1) caused significant larval mortality but naproxen did not even at the highest experimental concentration used. LC50 for naproxen and propylparaben in larvae were 1100 mg L-1 and 182.6 mg L-1, respectively. Naproxen (≥0.02 mg L-1) and propylparaben (≥0.02 mg L-1) reduced pupation. Emergence was also reduced by naproxen (≥164 mg L-1) and propylparaben (≥0.02 mg L-1). The fecundity of females was significantly reduced due to chronic exposure to naproxen (≥0.02 mg L-1). There was also a reduction in the fecundity of females due to chronic propylparaben exposure but it was statistically insignificant in the concentrations used. In the F1 generation eggs, only 100 mg L-1 propylparaben reduced eclosion. Eclosion and larval survival were sensitive to acute exposure, particularly to propylparaben. The reduced pupation and emergence indicated a delay in the progression of the life cycle. Chronic exposure also indicated a reduction in fecundity. F1 eggs exhibited tolerance to the negative effect of subsequent exposure. Our findings suggest that propylparaben can affect Ae. aegypti more negatively than naproxen.


Assuntos
Aedes , Animais , Feminino , Larva , Estágios do Ciclo de Vida , Naproxeno , Parabenos
5.
Parasitol Res ; 117(2): 377-389, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29250727

RESUMO

The present study was carried out to evaluate the larvicidal potential of methanol, hexane, acetone, chloroform, and aqueous bark extracts of Holarrhena antidysenterica (L.) Wall. and silver nanoparticles (AgNPs) synthesized using aqueous bark extract against the third instar larvae of Aedes aegypti L. and Culex quinquefasciatus Say. AgNPs were prepared by adding 10 ml of aqueous bark extract in 90 ml of 1 mM silver nitrate (AgNO3) solution. After 5 min of mixing, a change in color from yellow to dark brown occurred indicating the synthesis of AgNPs. Their further characterization was done through ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction analysis (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). UV-Vis spectrum of synthesized AgNPs showed a maximum absorption peak at 420 nm wavelength. Crystalline nature of AgNPs was confirmed by the presence of characteristic Bragg reflection peaks in XRD pattern. TEM images have shown that most of the AgNPs were spherical in shape with an average size of 32 nm. FT-IR spectrum of AgNPs showed prominent absorbance peaks at 1012.2 (C-O) and 3439.44 cm-1 (O-H) which represent the major constituents of phenolics, terpenoids, and flavonoids compounds. LC-MS analysis of the bark extract confirmed the presence of carbonyl and hydroxyl functional groups which were directly correlated with FT-IR results. These AgNPs were assayed against different mosquito vectors, and the maximum mortality was recorded against the larvae of A. aegypti with LC50 and LC90 values being 5.53 and 12.01 ppm, respectively. For C. quinquefasciatus, LC50 and LC90 values were 9.3 and 19.24 ppm, respectively, after 72 h of exposure. Bark extracts prepared in different solvents such as methanol, chloroform, hexane, acetone, and water showed moderate larvicidal activity against A. aegypti their respective LC50 values being 71.74, 94.25, 102.25, 618.82, and 353.65 ppm and LC90 values being 217.36, 222.24, 277.82, 1056.36, and 609.37 ppm. For C. quinquefasciatus, their LC50 values were 69.43, 112.39, 73.73, 597.74, and 334.75 ppm and LC90 values of 170.58, 299.76, 227.48, 1576.98, and 861.45 ppm, respectively, after 72 h of treatment. AgNPs proved to be nontoxic against the non-target aquatic organism, Mesocyclops thermocyclopoides Harada when exposed for 24, 48, and 72 h. The results showed that bark extract-derived AgNPs have extremely high larvicidal potential compared to other organic solvents as well as aqueous bark extract alone. These AgNPs, therefore, can be used safely for the control of dengue and filarial vectors that cause severe human health hazards.


Assuntos
Culicidae/efeitos dos fármacos , Holarrhena/química , Insetos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Prata , Aedes , Animais , Anopheles , Culex , Dengue , Inseticidas/síntese química , Inseticidas/química , Larva/efeitos dos fármacos , Extratos Vegetais/química , Folhas de Planta/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
6.
Environ Sci Pollut Res Int ; 24(17): 15125-15133, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28497330

RESUMO

It is believed that nanoemulsions were emerged as a promising candidate to improve the qualities of natural essential oil towards antimicrobial and insecticidal applications. In the present study, we have focused on the encapsulation of Vitex negundo L. leaf essential oil using Polysorbate80 for its different biological activities including antioxidant, bactericidal and larvicidal activity against dengue fever vector Aedes aegypti L. Initially, the nanoemulsion was prepared by low energy method and droplet size of the formulated nanoemulsion was characterized by using Dynamic Light Scattering analysis. The freshly prepared V. negundo essential nanoemulsion was observed with the mean droplet size of below 200 nm indicating its excellent stability. Further, the larvicidal activity of essential oil and nanoemulsion with various concentrations (25, 50, 100, 200 and 400 ppm). The larvicidal activities were tested 2nd and 3rd instar larval mortality rate that was observed against the 12 and 24 h exposure period. After a 12 h exposure period, the larvicidal activities of 2nd instar larva were observed as essential oil (73.33 ± 1.88), nanoemulsion (81.00 ± 0.88) and the larvicidal activities of 3rd instar larva were displayed essential oil (70.33 ± 2.60) and nanoemulsion (79.00 ± 3.70). Likewise, after a 24 h exposure period, the larvicidal activities of 2nd instar larva were observed as essential oil (90.30 ± 2.15), nanoemulsion (94.33 ± 1.20) and the larvicidal activities of 3rd instar larva were essential oil (80.66 ± 0.66) and nanoemulsion (93.00 ± 1.25) respectively. We finally concluded that the developed plant-based emulsion essential oil systems were thermodynamically stable. Owing to its improved bioavailability and biocompatibility, formulated nanoemulsion can be used in various biomedical applications including drug delivery as well as disease transmitting mosquito vector control. Graphical abstract ᅟ.


Assuntos
Aedes , Anti-Infecciosos/farmacologia , Inseticidas/farmacologia , Óleos Voláteis/farmacologia , Vitex/química , Animais , Larva , Extratos Vegetais , Folhas de Planta
7.
J Trace Elem Med Biol ; 43: 187-196, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28341392

RESUMO

The Aedes aegypti L. mosquito transmits dengue and yellow fever, which cause millions of death every year. Dengue is a mosquito-borne viral disease that has rapidly spread worldwide particularly in countries with tropical and subtropical climates areas. The present study denotes a simple and eco-friendly biosynthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract as reducing agent. The synthesized gold nanoparticles were characterized by UV-Visible Spectroscopy, X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Dynamic Light Scattering (DLS), Zeta Potential (ZP), Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectroscopy (EDX). Solid state 13C NMR was utilized to confirm the presence of larvicidal compound Beta caryophyllene in the synthesized AuNPs. Larvicidal activity of the synthesized AuNPs was measured against A. aegypti over 12 and 24h exposure periods and compared with essential oil in various concentrations (25ppm, 50ppm, 100ppm, 200ppm and 400ppm). After a 12h exposure period, the larvicidal activity of 3rd instar larva by AuNPs showed LC50=156.55ppm and LC90=2506.21ppm, while and essential oil displayed LC50=128.99ppm and LC90=1477.08ppm. Larvicidal activity of 4th instar larva by AuNPs showed LC50=97.90ppm and LC90=1677.36ppm, while essential oil displayed LC50=136.15ppm and LC90=2223.55ppm. After a 24h of exposure period, larvicidal activity of 3rd instar larva by AuNPs showed LC50=62.47ppm and LC90=430.16ppm and essential oil showed LC50=111.15ppm and LC90=1441.51ppm. The larvicidal activity of 4th instar larva and AuNPs displayed LC50=43.01ppm and LC90=376.70ppm and for essential oil LC50=74.42ppm, LC90=858.36ppm. Histopathology of A. aegypti with AuNPs for 3rdand 4th stage larvae after 24h exposure at the highest mortality concentration (400ppm) showed that the area of the midgut, epithelial cells and cortex were highly affected. The present findings demonstrate that the biosynthesis of AuNPs using A. vulgaris leaf extracts could be an eco-friendly, safer nanobiopesticide and treatment against A. aegypti which could be used to combat of dengue fever.


Assuntos
Aedes/efeitos dos fármacos , Artemisia/química , Ouro/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Animais , Dengue/prevenção & controle , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Rev. cuba. plantas med ; 22(1)ene.-mar. 2017. ilus, tab
Artigo em Espanhol | CUMED | ID: cum-73021

RESUMO

Introducción: en la actualidad, nuevas tendencias tecnológicas e iniciativas se están presentando en el desarrollo de productos insecticidas derivados de productos naturales, y de nuevos agentes antimicrobianos, dado que poseen bioactivos que son selectivos, biodegradables y tienen menores efectos adversos. La especie Ambrosia peruviana Willd. es de gran interés en el estudio por su gran potencial biológico y etnobotánico. Objetivo: evaluar la actividad larvicida sobre Aedes aegypty L. y la actividad antibacteriana sobre bacterias Gram positivas y Gram negativas de extractos de A. peruviana. Métodos: a partir del material vegetal seco (hojas), se obtuvieron cinco extractos de diferente polaridad en hexano (H), diclorometano (D), acetato de etilo (A) y etanol (E) y aceites esenciales (AE), los cuales fueron evaluados mediante la inhibición del crecimiento de larvas por el método recomendado de la OMS y la inhibición de las bacterias por el método de difusión en agar de Kirby-Bauer. Resultados: la tasa de mortalidad encontrada a las 24 h a una concentración de 200 ppm para todos los extractos fue del 10 por ciento. Al evaluar el paso de los insectos de larvas a adultos a las 144 h se observó a esta misma concentración una mortalidad del 100 por ciento con todos los extractos. Por otra parte, los extractos de A. peruviana presentaron inhibición sobre Bacillus cereus Frankland & Frankland y Bacillus subtilis (Ehrenberg) Cohn con halos de inhibición del extracto de diclorometano (APExtD) de 10,5 y 15,0 mm de diámetro respectivamente, al contrario sobre las cepas Serratia marcescens Bizio, Proteus mirabilis Hauser, Enterobacter cloacae (Jordan) Hormaeche & Edwards y Staphylococcus aureus Rosenbach no se presentó actividad antibacteriana. Conclusiones: esta investigación es el primer reporte de actividad larvicida sobre A. aegypty y de actividad antibacteriana sobre B. cereus y B. subtilis de varios extractos de A. peruviana con promisorios resultados en estos modelos(AU)


Introduction: New technological trends and initiatives are currently being put forth concerning the development of insecticidal products and antimicrobial agents of natural origin, since their bioactive components are selective and biodegradable, and cause fewer adverse effects. The species Ambrosia peruviana Willd. was of great interest to the present study, due to its great biological and ethnobotanical potential. Objective: Evaluate the larvicidal activity of A. peruviana extracts against Aedes aegypti L., and its antibacterial activity against gram-positive and gram-negative bacteria. Methods: Dry plant material (leaves) was processed to obtain five extracts of different polarity in hexane (H), dichloromethane (D), ethyl acetate (A), ethanol (E) and essential oils (AE), which were evaluated for larval growth inhibition with the method recommended by WHO, and for bacterial inhibition with the Kirby-Bauer agar diffusion method. Results: The mortality rate at 24 h and a concentration of 200 ppm was 10 percent for all extracts. Examination of the transition of larvae into adults at 144 h and the same concentration revealed a mortality of 100 percent with all extracts. On the other hand, the extracts of A. peruviana displayed inhibition capacity against Bacillus cereus Frankland & Frankland and Bacillus subtilis (Ehrenberg) Cohn with inhibition haloes for the dichloromethane extract (APExtD) of 10.5 and 15.0 mm in diameter, respectively, whereas no antibacterial activity was found against the strains Serratia marcescens Bizio, Proteus mirabilis Hauser, Enterobacter cloacae (Jordan) Hormaeche & Edwards and Staphylococcus aureus. Conclusions: This study is the first report of larvicidal activity againstA. aegypti and antibacterial activity against B. cereus and B. subtilis by several extracts of A. peruviana with promising results in these models(AU)


Assuntos
Animais , Aedes/patogenicidade , Inseticidas/uso terapêutico , Controle Biológico de Vetores/métodos , Teucrium , Teucrium/envenenamento , Controle de Vetores de Doenças
9.
Rev. cuba. plantas med ; 22(1)ene.-mar. 2017. ilus, tab
Artigo em Espanhol | LILACS, CUMED | ID: biblio-901506

RESUMO

Introducción: en la actualidad, nuevas tendencias tecnológicas e iniciativas se están presentando en el desarrollo de productos insecticidas derivados de productos naturales, y de nuevos agentes antimicrobianos, dado que poseen bioactivos que son selectivos, biodegradables y tienen menores efectos adversos. La especie Ambrosia peruviana Willd. es de gran interés en el estudio por su gran potencial biológico y etnobotánico. Objetivo: evaluar la actividad larvicida sobre Aedes aegypty L. y la actividad antibacteriana sobre bacterias Gram positivas y Gram negativas de extractos de A. peruviana. Métodos: a partir del material vegetal seco (hojas), se obtuvieron cinco extractos de diferente polaridad en hexano (H), diclorometano (D), acetato de etilo (A) y etanol (E) y aceites esenciales (AE), los cuales fueron evaluados mediante la inhibición del crecimiento de larvas por el método recomendado de la OMS y la inhibición de las bacterias por el método de difusión en agar de Kirby-Bauer. Resultados: la tasa de mortalidad encontrada a las 24 h a una concentración de 200 ppm para todos los extractos fue del 10 por ciento. Al evaluar el paso de los insectos de larvas a adultos a las 144 h se observó a esta misma concentración una mortalidad del 100 por ciento con todos los extractos. Por otra parte, los extractos de A. peruviana presentaron inhibición sobre Bacillus cereus Frankland & Frankland y Bacillus subtilis (Ehrenberg) Cohn con halos de inhibición del extracto de diclorometano (APExtD) de 10,5 y 15,0 mm de diámetro respectivamente, al contrario sobre las cepas Serratia marcescens Bizio, Proteus mirabilis Hauser, Enterobacter cloacae (Jordan) Hormaeche & Edwards y Staphylococcus aureus Rosenbach no se presentó actividad antibacteriana. Conclusiones: esta investigación es el primer reporte de actividad larvicida sobre A. aegypty y de actividad antibacteriana sobre B. cereus y B. subtilis de varios extractos de A. peruviana con promisorios resultados en estos modelos(AU)


Introduction: New technological trends and initiatives are currently being put forth concerning the development of insecticidal products and antimicrobial agents of natural origin, since their bioactive components are selective and biodegradable, and cause fewer adverse effects. The species Ambrosia peruviana Willd. was of great interest to the present study, due to its great biological and ethnobotanical potential. Objective: Evaluate the larvicidal activity of A. peruviana extracts against Aedes aegypti L., and its antibacterial activity against gram-positive and gram-negative bacteria. Methods: Dry plant material (leaves) was processed to obtain five extracts of different polarity in hexane (H), dichloromethane (D), ethyl acetate (A), ethanol (E) and essential oils (AE), which were evaluated for larval growth inhibition with the method recommended by WHO, and for bacterial inhibition with the Kirby-Bauer agar diffusion method. Results: The mortality rate at 24 h and a concentration of 200 ppm was 10 percent for all extracts. Examination of the transition of larvae into adults at 144 h and the same concentration revealed a mortality of 100 percent with all extracts. On the other hand, the extracts of A. peruviana displayed inhibition capacity against Bacillus cereus Frankland & Frankland and Bacillus subtilis (Ehrenberg) Cohn with inhibition haloes for the dichloromethane extract (APExtD) of 10.5 and 15.0 mm in diameter, respectively, whereas no antibacterial activity was found against the strains Serratia marcescens Bizio, Proteus mirabilis Hauser, Enterobacter cloacae (Jordan) Hormaeche & Edwards and Staphylococcus aureus. Conclusions: This study is the first report of larvicidal activity againstA. aegypti and antibacterial activity against B. cereus and B. subtilis by several extracts of A. peruviana with promising results in these models(AU)


Assuntos
Animais , Controle Biológico de Vetores/métodos , Aedes/patogenicidade , Controle de Vetores de Doenças , Teucrium/efeitos dos fármacos , Teucrium/envenenamento , Inseticidas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...